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We study analytically and numerically a new class of circular resonators based on a radial photonic crystal
reflector. The Bragg confinement enables the realization of compact resonators exhibiting both large free
spectral range and highQ-factor. The dependence of the resonator characteristics on the reflector architecture
and dimensions is studied in detail. Good agreement is found between the analytical and the numerical results
obtained by finite-difference time-domain simulations.
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I. INTRODUCTION

Circular resonators are key ingredients in the realization
of many basic components needed for advanced optical com-
munication systems. During the last decade, numerous
circular-resonator based applications such as filters[1], add/
drop multiplexers[2], modulators[3], and delay lines[4]
have been suggested and demonstrated. In addition, the ap-
plicability of circular resonators was shown to extend be-
yond telecommunication to the fields of sensing[5], spec-
troscopy, and standardization[6], as well as to basic research
in QED, nonlinear optics, and other related fields[7,8].

For many of these applications, the circular resonator is
required to exhibit low losses or, equivalently, a high quality
factor sQd. In addition to highQ, it often desirable that the
resonator has small dimensions or, equivalently, exhibits
large free spectral range(FSR). Unfortunately, for conven-
tional resonators, which utilize total internal reflection(TIR)
as the radial confinement mechanism, these requirements are
mutually contradicting. To exhibit large FSR, a circular reso-
nator is required to have a short circumference and small
bending radius. In these conditions, the efficiency of the TIR
confinement mechanism is significantly impaired, leading to
larger power dissipation and lowerQ-factor [9].

For a given bending radius, the radial confinement and
hence, the bending losses, can be improved by increasing the
index contrast between the core and the cladding. On the
other hand, this would decrease the FSR due to the increase
in the effective index(propagation factor) of the electromag-
netic field in the core. Since there is a limit to the refractive
index value of available optically transparent materials, it is
clear that the TIR mechanism inherently limits the ability to
realize circular resonators with both low losses and large
FSR.

Photonic crystal(PC) cavities have been extensively stud-
ied for highQ cavity applications(Q values up to 4.53104

have been demonstrated) [10]. However, these resonators
consist primarily of a defect(either point or line), which does
not necessarily support a whispering-gallery-mode-like solu-
tion, or of hexagonal(noncircular) cavities incorporating
120° abrupt bends which tend to support localized bound
states[11].

Recently, we have suggested utilizing Bragg reflection in-
stead of TIR as the radial confinement mechanism in order to
break the link between the FSR and the loss and facilitate
low-loss, large FSR circular resonators[12]. This concept is
illustrated in Fig. 1. A disk[Fig. 1(a)] or a circumferentially
guiding defect[Fig. 1(b)] is located within a medium which
consists of annular Bragg layers. The confinement of the
modal field within the defect[Fig. 1(b)] or in the disk[Fig.
1(a)] is accomplished by Bragg reflection instead of TIR.
Unlike conventional resonators, the reflectivity of the Bragg
mirror can be increased simply by adding more layers. As a
result, the radius of the defect(or the disk) can be reduced
almost arbitrarily without the penalty of higher bending
losses.

Disk and ring resonators based on distributed Bragg re-
flection were analyzed before for both laser and passive reso-
nator applications, employing various techniques such as
conformal mapping, coupled-mode approach, and field trans-
fer matrices[13]. While circular symmetric structures, as
shown in Fig. 1, can be modeled accurately by transfer ma-
trix formalism [13], the analysis of noncircular symmetric
structures(see Fig. 2) requires different tools. Recently, we
developed a coupled-wave approach to design and analyze
such structures[14].

In this paper, we study analytically and numerically the
characteristics of disk resonators that utilize photonic crystal
reflectors. The main advantage of this class of resonators,
compared to the circular symmetric structures shown in Fig.
1, is that it is suited to a greater variety of realization con-
cepts. Particularly, the fabrication of such structures is com-
patible with the suspended membrane concept which was
proven to be very successful for PC defect cavities[10]. In
addition, unlike the circular symmetric devices, the upper
surface of the circular PC resonators is continuous and,
therefore, supports the deposition of an electrical contact,
thus enabling electrical pumping.

In Sec. II we briefly review the coupled-wave approach
which is employed to design the resonators. In Sec. III we
utilize this approach to design circular PC resonators and to
study the impact of various photonic lattice designs on the
resonators’ spectral features, modal field profile, and
Q-factor. In Sec. IV we study the impact of the reflector
finiteness and in Sec. V we discuss the results and summa-
rize.*Electronic address: koby@caltech.edu
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II. COUPLED-WAVE EQUATIONS

We consider a wave which propagates azimuthally in a
structure as illustrated in Fig. 2; a disk of dielectric material
which is surrounded by radial perturbation of the dielectric
coefficient«srd. Assuming the electromagnetic field is well
confined in the vertical dimension, the effective index ap-
proximation[15] can be used to reduce the 3D problem to an
equivalent 2D problem. In the 2D geometry, the modal solu-
tions can be separated into two independent polarizations:
TE, consisting ofEz,Hr, and Hu, and TM consisting of
Hz,Er, andEu, wherer ,u, andz are, respectively, the radial,
azimuthal, and axial coordinates[16]. All the electromag-
netic field components can be expressed by thez component
of either the electric(TE) or magnetic(TM) fields. In this
paper, we focus on the TE polarization although the analysis
of the TM polarization is similar.

We look for a modal solution of the Helmholtz equation
in radial coordinates which is resonant in the structure shown
in Fig. 2, with the following functional form:

Ez = Esrdexpsimud, s1d

wherem is an integer. The radial part of the field satisfies the
Bessel equation:

r2d2E

dr2 + r
dE

dr
+ fk2srdr2 − m2gE = 0, s2d

whereksrd=k0«srd is the wave number. We assume that the
dielectric coefficient«srd is given by «=n0

2 in the unper-
turbed area(r,r0 in Fig. 2 and by«=n0

2+D«srd within the
perturbed region. Introducing the normalized radiusx
=k0n0r yields the dimensionless wave equation:

x2Exx + xEx + fx2 − m2gE = 0, x ø x0, s3ad

x2Exx + xEx + Fx2S1 +
D«sxd

n0
2 D − m2GE = 0, x . x0,

s3bd

wherex0=k0n0r0 is the dimensionless radius of the disk. The
solution of Eq.(3) in the disk region is given by a superpo-
sition of themth order Hankel functions of the first and sec-
ond kind. When the perturbationD«srd is small compared to
n0

2, the solution of Eq.(3) in the perturbed region can be
written as slowly varying envelopes multiplying the Hankel
functions:

Esxd =HĀHm
s1dsxd + B̄Hm

s2dsxd, x ø x0

AsxdHm
s1dsxd + BsxdHm

s2dsxd, x . x0.
s4d

Introducing Eq.(4) into Eq. (3b) and neglecting the second
derivatives ofAsxd andBsxd leads to[using Eq.(3a)]

dA

dx
S2

dHm
s1d

dx
+

Hm
s1d

x
D +

dB

dx
S2

dHm
s2d

dx
+

Hm
s2d

x
D +

D«

n0
2 sAHm

s1d

+ BHm
s2dd = 0, s5d

where the specificx dependence of the amplitudes and the
Hankel functions was dropped for clarity. In previous studies
[13], the asymptotic approximation for the Hankel functions
was used to derive a simplified equation, yielding complex
exponentials inx as the required perturbation profile. Here
we introduce the following approximation for large
x:Hm

s1,2d /x, ,dHm
s1,2d /dx anddHm

s1,2d /dx< ± iHm
s1,2d [14]. Ap-

parently, this approximation for the derivatives of the Hankel
functions is more accurate than the derivative of the “con-
ventional” asymptotic approximation(see[14] for more de-
tails).

Under these approximations, equation(5) can be rewritten
as

FIG. 1. An illustration of(a) a
Bragg disk resonator; and(b) an
annular defect mode(ring) resona-
tor structure.

FIG. 2. Schematic index profile of a PC disk resonator. Gray:
material; and black: air holes.
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2ifHm
s1dsxdAxsxd − Hm

s2dsxdBxsxdg +
D«sxd

n0
2 fAsxdHm

s1dsxd

+ BsxdHm
s2dsxdg = 0. s6d

It should be noted thatHm
s1d andHm

s2d represent incoming and
outgoing cylindrical waves. In view of Eq.(6) it is clear that
the perturbationD«, which is required to efficiently couple
power between the incoming and outgoing waves, should
have the following form:

D«sxd = a
Hm

s2dsxd
Hm

s1dsxd
+ a* Hm

s1dsxd
Hm

s2dsxd
, s7d

wherea is a complex amplitude of the perturbation. Intro-
ducing Eq.(7) into Eq.(6) and keeping only the first order in
Hm

s1d andHm
s2d (as in the derivation of Cartesian coupled mode

theory) yields a set of coupled equations for the wave ampli-
tudesA andB:

2i
dAsxd

dx
+

a*

n0
2 Bsxd = 0,

− 2i
dBsxd

dx
+

a

n0
2Asxd = 0. s8d

SinceHm
s1d andHm

s2d are complex conjugates of each other, the
ratio between them is twice the phasew of the numerator and
Eq. (7) can be written as

D« = 2uaucosh2wsHm
s1dd − waj, s9d

where wa is the phase ofa. It is worth noting that the
coupled amplitude equations(8) and the required perturba-
tion profile (9) exhibit fundamental resemblance to the Car-
tesian case[16]. In both cases, the perturbation is determined
by the phase of the eigenmodes of the wave equation in the
appropriate coordinates(plane wave for the Cartesian case
and Hankel functions for the cylindrical case).

The equations set(8), which describe the evolution of the
amplitudes of the cylindrical waves inr, can be readily
solved:

Asxd = A1 expskxd + A2 exps− kxd,

Bsxd = − i
k

k* fA1 expskxd − A2 exps− kxdg, s10d

wherek=a /2n0
2 is the coupling coefficient between the out-

going and incoming waves. Knowing the perturbation profile
needed to attain radial confinement(9) and the modal field
profile (10), it is possible to design and analyze a circular
distributed feedback resonator.

III. CIRCULAR PHOTONIC CRYSTAL RESONATORS

In this section, we employ the results of the previous sec-
tion to design and analyze a disk resonator which is based on
a circular PC reflector. The modal field characteristics are
verified and studied further by finite difference time domain
(FDTD) simulations.

A schematic of a circular PC resonator structure is shown
in Fig. 2. Since we attempt to design a resonator, we need to
know the required resonance wavelengthl and the modal
field azimuthal numberm. Knowing that the required pertur-
bation profile is given by Eq.(9), the parameters left to be
determined area and the disk radiusx0.

Inside the disksx,x0d, the modal field is given by Eq.
(4). For the field to be finite atx=0 it is required that the
amplitudes of the incoming and outgoing waves are equal,

i.e., Ā=B̄. As a result, the field atx,x0 is given byJmsxd
whereJm is themth order Bessel function of the first kind. In
the grating regionsx.x0d the field profile is given by Eq.
(10). For simplicity, we assume that the gratings extend to
very large radius so that the exponentially increasing term in
Eq. (10) vanishes, i.e.,A1=0. At the interface between the
disk and the gratingsx=x0d, both the field and its derivative
must be continuous(for TE polarization). The phase of the
coupling coefficientk= ukuexpsiwkd (or a) can be, in principal,
selected arbitrarily(as for Cartesian Bragg reflectors), it
merely introduces a spatial shift of the gratings(9). However,
this phase affects the required disk radius,x0, which satisfies
the boundary conditions. For the specific case ofwk=p /2,
the characteristic equation forx0 is simple:Jmsx0d=0. In this
case, the required perturbation and field profiles are given by

D«sxd = H0, x , x0

− 2uausinf2wsHm
s1dsxddg x ù x0,

s11ad

Esxd = HJmsxd, x , x0

Jmsxdexpf− ukusx − x0dg, x ù x0.
s11bd

Equation(11) yields both the pertinent perturbation term and
the field profile. In order to radially confine the mode, the
perturbation profile must include a term with the functional
form of Eq. (11a). To realize a PC reflector, we suggest the
following index profile:

«sx,ud = Hn0
2 − sn0

2 − np
2dIf2wsHm

s1dsxdd,a1gIflu,a2g, x . x0

n0
2, x ø x0,

Isy,ad = H0, sinsyd , a

1, sinsyd ù a,
s12d

where −1,a1,a2,1, n0 is the material index of refraction
and l is the azimuthal number of the index profile. The struc-
ture consists of a dielectric material of refractive indexn0
perforated by holes with refractive indexnp.

This index profile is the radial equivalent of a rectangular
PC with rectangular holes. The perforation functionIsy,ad
can be interpreted as a generalized rectifier of sinsyd, gener-
ating square “pulses” only where sinsyd.a. The larger the
value ofa, the narrower the “pulses.” The index profile(12)
includes twoI functions: the first generates annular slits cen-
tered at the maxima of sinh2wfHm

s1dsxdgj with widths that are
determined bya1. The secondI function modulates these
slits as a function of the angleu with angular frequencyl and
“duty-cycle” determined bya2.
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For np=1 (air holes), the Fourier expansion of the perfo-
ration functionIsy,ad is given by

Isy,ad = cos−1sad/p

− o
m=1

`
s− 1dm − 1

mp
cosfm sin−1sadgsinsmyd

− o
m=1

`
s− 1dm + 1

mp
sinfm sin−1sadgcossmyd.

s13d

The term which is responsible for the radial confinement of
the modal field is the first order in the radial expansion and
zero order in the azimuthal expansion, which is given by

D«1,0= − 2sn0
2 − 1dcosfsin−1sa1dgcos−1sa2d/p2. s14d

The fact thatD«1,0 is independent of the azimuthal number
of the perturbation,l, indicates that the azimuthal details of
the index profile are of less significance. The azimuthal
modulation is averaged over the device circumference and its
only influence on the coupling coefficient is through the “fill-
ing factor” cos−1sa2d. A similar conclusion was also deduced
for microstructured fibers[17]. It should be clear, however,
that this result stems directly from neglecting all the terms in
Eq. (12) exceptD«1,0, which is accurate only ifl @m. Nev-
ertheless, in this limit the conclusion holds and the azimuthal
dependence of Eq.(12) can be modified without deteriorat-
ing the performances of the device.

In the remainder of this section, we verify the results of
the coupled-wave analysis using FDTD simulations. We
study the spectral characteristics andQ-factor of circular PC
resonators that employ reflectors of different geometries. The
PC-reflector types are illustrated in Fig. 3. Figure 3(a) de-
picts a “rectangular lattice” consisting of the perturbation

profile (12). Figure 3(b) depicts a “triangular”-type lattice PC
reflector, in which every other “necklace” of holes is rotated
by p / l (l is the azimuthal periodicity of the perturbation).
The dielectric profile of this lattice forx.x0 is given by

«triangularsx,ud = n0
2 − sn0

2 − np
2dhI„2wfHm

s1dsxdg,a1…

3I„wfHm
s1dsxdg,0…Islu,a2d

+ I„2wfHm
s1dsxdg,a1…†1 −I„wfHm

s1dsxdg,0…‡

3Iflu + p,a2gj. s15d

The perturbation in Eq.(15) consists of two terms where one
of them generates the rotated necklaces of holes and the
other generates the nonrotated necklaces. An additionalI
function was used to distinguish between the two sets of
holes. The leading term of the perturbation profile can be
calculated by substituting Eq.(13) into Eq.(15) and keeping
only the terms with first order inr and zero order inu. Not
surprisingly, the outcome of this calculation is identical to
the “rectangular” lattice case(14).

Figure 3(c) depicts a reflector which does not consist of a
single azimuthal modulation frequency. This type of reflector
was constructed with an attempt to keep the hole shapes as
close as possible to an ideal square. As a result, the number
of holes per “necklace” increases for larger radii. We desig-
nate this type of reflector as a “varying–l” lattice. This type
of reflector does not have an equivalent Cartesian PC be-
cause it does not form a genuine crystal. Nevertheless, in the
small perturbation regime we expect the characteristics of
such a resonator to be similar to those of the resonators
shown in Figs. 3(a) and 3(b).

In the resonator depicted in Fig. 3(d), the concept de-
scribed in the previous paragraph was extended further. It is
reasonable to assume that if the holes perforating the me-
dium are small, their actual shape is of less significance and
that the important factor is their area. The reflector in Fig.
3(d) was constructed by replacing each hole in Fig. 3(c) with
a circular hole which has the same area. Again, we can ex-
pect the resonator characteristics to remain unaffected.

Figure 4 compares the numerically calculated radial mode
profiles of various resonator types which have the samea1
and a2 parameters and the analytically calculated profile
(11b). The wavelength is 1.52mm and the parameters of the
structures are defined in the figure caption. The numerical
solutions indicate that, as expected, the mode profiles of the
different structures are practically identical. In addition, the
good agreement with the approximated analytical solution is
clear, even though the index contrast in the reflector region is
relatively high.

Figure 5 depicts the resonance frequencies calculated by
two-dimensional FDTD for several PC reflector structures(
a1 anda2 are the same for all structures). The spatial reso-
lution was 0.01mm. The resonances were calculated by ex-
citing the structure with a very short pulses20 fsd and letting
it circulate in the resonator for a long period while monitor-
ing the field amplitude at the peak of the mode. Taking the
Fourier transform of the field yields the spectral response of
the resonator. The spectral responses of all the structures are
almost identical, with resonaces atl =1.52mm for m=8 (the

FIG. 3. The different reflector types:(a) “rectangular” lattice,
(b) “triangular” lattice, (c) “varying-l” lattice with rectangular
holes, and(d) “varying–l” lattice with circular holes.
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target mode) and at 1.455mm for m=9. The inset of Fig. 5
shows the modal field profiles at the resonance frequencies
and the corresponding field profiles, which are also identical
for all structures. It is evident that the field profile ofm=8 is
more confined in the resonator than the field profile ofm
=9. This is because the radial part of the gratings is designed
for m=8 and, as a result, them=9 mode has a smaller decay
coefficient in the gratings. This is in contrast to conventional
(TIR based) disk resonators for which higherm numbers are
generally associated with more grazing incidence angles of
the field at the interface. These modes are confined more
strongly in the disk and, therefore, experience lower bending
losses.

According to Eq.(14), the modal field profile of the reso-
nator is independent of the azimuthal frequency of the per-
turbation,l. Figure 4, which depicts the field profile for vari-
ous structures, indicates that this is indeed correct. Moreover,
as shown in Fig. 5, the spectral response(i.e., the resonance
wavelengths) of the resonators is almost independent of the

lattice type and the azimuthal perforation frequency. It is,
therefore, interesting to examine whether the quality factor is
also independent of the reflector architecture. Figure 6 shows
the dependence of the ringdown time constant(and, hence,
the Q) on the azimuthal perforation frequencyl. The ring-
down time constant is a measure for the photon lifetime in
the cavity and it is related to theQ according to

Q = w0t0, s16d

wherew0 is the resonance(angular) frequency of the resona-
tor.

It seems that the general trend is that higherQ factors are
attained for larger values ofl for both the triangular and the
rectangular lattices. However, there is a clear decrease in the
Q for l =56, most probably due to grating assisted phase
matching to a radiating mode. The simulations also indicate
that a rectangular lattice reflector exhibits lower losses com-
pared to a triangular lattice reflector with the same angular
perturbation frequency. Nevertheless, as seen in Fig. 6, a

FIG. 4. Comparison between the modal field
profiles of the different resonator structures:
“rectangular” lattice withl =58 (dashed), “trian-
gular” lattice with l =66 (dotted), “varying-l” lat-
tice with rectangular holes(solid), “varying-l”
lattice with circular holes(dash-dot), and analyti-
cal solution(circles). The other parameters of the
structure aren0=3.5, m=8, a1=0.9, anda2=0.

FIG. 5. Resonance frequencies of the various structures: “trian-
gular” lattice with l =39 (dashed), “rectangular” lattice withl =41
(solid), “varying-l” lattice with circular holes (dotted), and
“varying-l” lattice with rectangular holes(dash-dot). The inset
shows the corresponding field profiles.

FIG. 6. The cavity ringdown time constant as function of the
azimuthal perturbation frequencyl: and “rectangular” lattice(solid)
and “triangular” lattice(dashed). The dash-dot line indicates the
ringdown time constant of the “varying-l” lattice with rectangular
holes.
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reflector consisting of higher angular perturbation frequency
for larger radii (“varying-l” ) is significantly superior(from
the quality factor point of view) to a reflector with constant
angular perturbation frequency. This result can be understood
as stemming from the dependence of theQ on l. At larger
radii, the angular frequency of the “varying-l” reflector in-
creases and, as a result, the reflectivity of the gratings is
improved.

The fact that the coupled-wave approach does not predict
different characteristics for the various lattice types and val-
ues of l is not surprising. The information on the azimuthal
perforation profile is lost in the selection ofD«1,0 as the
perturbation term. This term is influenced by the azimuthal
properties of the lattice only through the mean azimuthal
“filling factor” which is independent of l. To account for the
impact of the higher order azimuthal terms, a cylindrical
equivalent of the more rigorous coupled-wave analysis has to
be developed[18]. This is, however, beyond the scope of this
paper.

The analysis given here is two-dimensional and, there-
fore, does not account for out-of-plain radiation losses. It has
been recently shown that, under certain circumstances, the
out-of-plain losses could be the dominant mechanism which
limits the attainableQ of a PC cavity[19]. These vertical
radiation losses stem from low spatial frequency components
of the modal field profile which do not satisfy the vertical
TIR condition. However, a significant part of these losses can
by canceled by careful optimization of the index profile, es-
pecially if the modal field and, correspondingly, the index
profile are modified to have a more radial symmetry. Ryuet
al. showed that it is possible to improve the verticalQ of a
PCH2 cavity by a factor of 100 simply by rearranging the 12
nearest-neighbor holes more symmetrically and decreasing
their size[19]. The structure of a circular PC resonator and
its mode profile already possess the desired radial symmetry
and are expected to exhibit low vertical radiation losses.

IV. FINITE GRATINGS

The field profile shown in Eq.(11b) was calculated under
the assumption of infinitely long gratings. Under this as-
sumption, the reflection coefficient of the Bragg mirror is
unity and the electromagnetic field propagates in the resona-
tor without loss(assuming there is no material absorption).
However, in any practical device the gratings’ length is finite
and, therefore, part of the energy in the resonator “leaks” or
radiates to the device surroundings.

The coupled-wave equations(8) and their solution(10)
can be used to evaluate the power leakage due to the finite-
ness of the gratings. Figure 7 shows a radial cross section of
the resonator structure and thez component of the electric
field in the three distinct regions of the device: the inner disk,
the Bragg reflector, and the external surroundings. To ac-
count for the power leakage, we assume that the Bragg mir-
ror has a reflection coefficientur u,1 and a transmission co-
efficient t. The electric field in the different regions is given
by:

Ez = 5Hm
s1dsxd + rHm

s2dsxd, x , x0

AsxdHm
s1dsxd + BsxdHm

s2dsxd, x0 ø x ø xl

tHm
s1dsxd, x . xl ,

s17d

wherexl is the normalized external radius of the gratings and
Asxd and Bsxd are given by Eq.(10). The amplitude of the
field in one of the regions can be selected arbitrarily. In Eq.
(17), the amplitude of the outgoing field in the inner disk was
selected to be 1. Requiring the boundary conditions atx0 and
xl (for TE, continuity of the field and its derivative) yields
expressions for the reflection and transmission of the Bragg
mirror, which under the assumptions of small coupling and
the fact thatJmsx0d=0, are given by

r = tanhfukusxl − x0dg,

t = 1/coshfukusxl − x0dg, s18d

wherer and t satisfy the conservation of powerr2+ t2=1.
The reflection coefficient r indicates the fraction of the

field amplitude which remains in the cavity after each
“bounce” of the field from the Bragg mirror. The number of
“bounces” in a single roundtrip is equal to the azimuthal
number of the mode,m. Therefore the power loss in the
cavity per revolution due to the finiteness of the structure in
given by

L = 1 − r2m = 1 − tanh2mfukusxl − x0dg. s19d

The loss per revolution(19) is related to the cavity ringdown
time constant through the energy velocity of the modal field
in the resonator[20]. The roundtrip time is given by the ratio
between the total energy stored in the resonator and the
power flow through a radial cross section in the structure:

tRT =

1

4
E E s«0n

2uEu2 + m0uEu2drdrdu

1

2
È0

ResEH*ddr

. s20d

The power loss per roundtrip(19) corresponds to the decay
in the field intensity within a single roundtrip time, equal to

FIG. 7. Schematic cross section of the resonator structure, illus-
trating the amplitudes of the inward and outward propagating field
components in each relevant region.
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exps−tRT/t0d, wheret0 is the cavity ringdown time constant.
Equating the two quantities yields an expression fort0:

t0 = −
tRT

2m lnhtanhfukusxl − x0dgj
<
k!1

tRT

4m
expf2ukusxl − x0dg.

s21d

Figure 8 depicts the cavity ringdown constant as a function
of the reflector “length,”xl −x0 for a “varying-l” type reso-
nator (see Fig. 3) calculated by FDTD simulations and a fit
based on Eq.(21). The parameters of the resonator are the
same as in Fig. 4. It is clear that the ringdown time constant
is indeed an exponential function of the grating length. The
coupling coefficientk extracted from Fig. 8 is approximately
0.03 which is quite close to the predicted value of 0.032
given by Eq.(14).

Figure 9 depicts the field calculated by an FDTD simula-
tion of a “varying-l” type resonator where the reflector is
finite with an external radius of 5.3mm. The existence of the
radiating field at radii larger than the 5.3mm is clearly vis-
ible. It should be emphasized that adding layers to the reflec-
tor does not change the FSR or even the resonance frequen-
cies of the device.

V. DISCUSSION AND SUMMARY

We have studied, analytically and numerically, the char-
acteristics of circular resonators that are based on a PC re-
flector, using the FDTD algorithm and a coupled-wave ap-
proach. In the limit of small perturbations, the actual angular
profile of the reflector is of minor significance for many of
the resonator characteristics, with the important factor being
the average “filling factor” of the perforation. Several lattice
and “quasi-lattice” types were suggested and studied, all ex-
hibiting similar spectral responses and mode profiles even
beyond the small perturbations limit. The effect of the reflec-
tor finiteness on the cavity ringdown time constant was also
studied, showing that this time constant(and hence the
Q-factor) is exponentially increasing with the reflector
length. The exponential growth factor equals twice the cou-

pling coefficient between the incoming and outgoing waves.
Good agreement was found between the analytically calcu-
lated field profile and ringdown time constant, and the nu-
merically obtained results, even for relatively high index
contrasts.

While the modal field profiles and the spectral response of
the resonator seem to be independent of the azimuthal prop-
erties of the perturbation, theQ-factor increases as a function
of l, even whenl @m. In addition, rectangular lattice reflec-
tors exhibit lower losses compared to the corresponding tri-
angular lattice reflectors. However, the “varying-l” type reso-
nator exhibits a much higherQ (by almost a factor of 10)
compared to the fixedl resonators. At first glance, this result
seems counterintuitive because the electromagnetic wave is
not expected to be influenced by features that are much
smaller than the field effective wavelength. Nevertheless, the
coupled-wave approach presented here accounts only for the
first order terms in the perturbation. Since the structures ana-
lyzed here exhibit high index contrast(3.5 vs 1) it is likely
that higher order terms have non-negligible impact.

The bending losses of the PC circular resonator were
shown to be decoupled from the FSR and even from the
actual resonance wavelength of the cavity. Lower losses and
higherQ can be attained simply by adding more layers to the
reflector (see Fig. 6). The decoupling of the resonator FSR
and resonance frequencies from the bending losses is a sig-
nificant advantage of the circular PC resonators which paves
the way to the realization of compact devices exhibiting both
high Q and large FSR.
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FIG. 8. FDTD calculated cavity ringdown constant as a function
of the grating “length,” xl −x0, and an exponential fit for a
“varying-l” type resonator with rectangular holes.

FIG. 9. Field profile of a “varying-l” type resonator with a
5.3mm “long” reflector. The white lines indicate the reflector
region.
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